Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478555

RESUMO

The mitotic spindle is the bipolar, microtubule-based structure that segregates chromosomes at each cell division. Aberrant spindles are frequently observed in cancer cells, but how oncogenic transformation affects spindle mechanics and function, particularly in the mechanical context of solid tumors, remains poorly understood. Here, we constitutively overexpress the oncogene cyclin D1 in human MCF10A cells to probe its effects on spindle architecture and response to compressive force. We find that cyclin D1 overexpression increases the incidence of spindles with extra poles, centrioles, and chromosomes. However, it also protects spindle poles from fracturing under compressive force, a deleterious outcome linked to multipolar cell divisions. Our findings suggest that cyclin D1 overexpression may adapt cells to increased compressive stress, possibly contributing to its prevalence in cancers such as breast cancer by allowing continued proliferation in mechanically challenging environments.


Assuntos
Centrossomo , Ciclina D1 , Humanos , Centríolos , Ciclina D1/genética , Mitose , Oncogenes , Fuso Acromático/genética
2.
J Cell Sci ; 135(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35673984

RESUMO

The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to the MAGUK-binding stalk domain of KIF13B relieves motor autoinhibition and promotes microtubule plus-end-directed cargo transport. Here, we characterize angiomotin (AMOT) isoform 2 (p80, referred to as Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live-cell imaging analysis indicated that Ap80 is concentrated at and recruits PALS1 to the base of the primary cilium, but is not a cargo of KIF13B itself. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and reduced agonist-induced ciliary accumulation of SMO, a key component of the Hedgehog signaling pathway, whereas Ap80 overexpression caused ciliary shortening. Our results suggest that Ap80 activates KIF13B cargo binding at the base of the primary cilium to regulate ciliary length, composition and signaling.


Assuntos
Angiomotinas , Proteínas de Membrana , Cílios/metabolismo , Guanilato Quinases , Proteínas Hedgehog/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas
3.
Elife ; 92020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33174839

RESUMO

Intracellular transport relies on multiple kinesins, but it is poorly understood which kinesins are present on particular cargos, what their contributions are and whether they act simultaneously on the same cargo. Here, we show that Rab6-positive secretory vesicles are transported from the Golgi apparatus to the cell periphery by kinesin-1 KIF5B and kinesin-3 KIF13B, which determine the location of secretion events. KIF5B plays a dominant role, whereas KIF13B helps Rab6 vesicles to reach freshly polymerized microtubule ends, to which KIF5B binds poorly, likely because its cofactors, MAP7-family proteins, are slow in populating these ends. Sub-pixel localization demonstrated that during microtubule plus-end directed transport, both kinesins localize to the vesicle front and can be engaged on the same vesicle. When vesicles reverse direction, KIF13B relocates to the middle of the vesicle, while KIF5B shifts to the back, suggesting that KIF5B but not KIF13B undergoes a tug-of-war with a minus-end directed motor.


Assuntos
Cinesinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos , Transporte Proteico , Vesículas Transportadoras , Proteínas rab de Ligação ao GTP/genética
4.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33044554

RESUMO

Eukaryotic cells typically form a single, round nucleus after mitosis, and failures to do so can compromise genomic integrity. How mammalian cells form such a nucleus remains incompletely understood. NuMA is a spindle protein whose disruption results in nuclear fragmentation. What role NuMA plays in nuclear integrity, and whether its perceived role stems from its spindle function, are unclear. Here, we use live imaging to demonstrate that NuMA plays a spindle-independent role in forming a single, round nucleus. NuMA keeps the decondensing chromosome mass compact at mitotic exit and promotes a mechanically robust nucleus. NuMA's C terminus binds DNA in vitro and chromosomes in interphase, while its coiled-coil acts as a central regulatory and structural element: it prevents NuMA from binding chromosomes at mitosis, regulates its nuclear mobility, and is essential for nuclear formation. Thus, NuMA plays a structural role over the cell cycle, building and maintaining the spindle and nucleus, two of the cell's largest structures.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromossomos Humanos/metabolismo , DNA/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Cromossomos Humanos/genética , DNA/genética , Células HEK293 , Humanos , Interfase , Fuso Acromático/genética
5.
Elife ; 72018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29983140

RESUMO

Optogenetic approaches are leading to a better understanding of the forces that determine the plane of cell division.


Assuntos
Complexo Dinactina , Dineínas , Divisão Celular , Microtúbulos , Fuso Acromático
6.
Nat Commun ; 8: 14177, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134340

RESUMO

Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.


Assuntos
Caveolina 1/metabolismo , Cílios/fisiologia , Cinesinas/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Domínios Proteicos/fisiologia , Regulação para Cima , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
7.
J Biol Chem ; 291(39): 20617-29, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27528609

RESUMO

During cytokinesis, the antiparallel array of microtubules forming the central spindle organizes the midbody, a structure that anchors the ingressed cleavage furrow and guides the assembly of abscission machinery. Here, we identified a role for the flavoprotein monooxygenase MICAL3, an actin disassembly factor, in organizing midbody-associated protein complexes. By combining cell biological assays with cross-linking mass spectrometry, we show that MICAL3 is recruited to the central spindle and the midbody through a direct interaction with the centralspindlin component MKLP1. Knock-out of MICAL3 leads to an increased frequency of cytokinetic failure and a delayed abscission. In a mechanism independent of its enzymatic activity, MICAL3 targets the adaptor protein ELKS and Rab8A-positive vesicles to the midbody, and the depletion of ELKS and Rab8A also leads to cytokinesis defects. We propose that MICAL3 acts as a midbody-associated scaffold for vesicle targeting, which promotes maturation of the intercellular bridge and abscission.


Assuntos
Citocinese/fisiologia , Oxigenases de Função Mista/metabolismo , Fuso Acromático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Oxigenases de Função Mista/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fuso Acromático/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
Cell Rep ; 8(5): 1248-56, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25176647

RESUMO

Cargo transport along microtubules is driven by the collective function of microtubule plus- and minus-end-directed motors (kinesins and dyneins). How the velocity of cargo transport is driven by opposing teams of motors is still poorly understood. Here, we combined inducible recruitment of motors and adaptors to Rab6 secretory vesicles with detailed tracking of vesicle movements to investigate how changes in the transport machinery affect vesicle motility. We find that the velocities of kinesin-based vesicle movements are slower and more homogeneous than those of dynein-based movements. We also find that Bicaudal D (BICD) adaptor proteins can regulate dynein-based vesicle motility. BICD-related protein 1 (BICDR-1) accelerates minus-end-directed vesicle movements and affects Rab6 vesicle distribution. These changes are accompanied by reduced axonal outgrowth in neurons, supporting their physiological importance. Our study suggests that adaptor proteins can modulate the velocity of dynein-based motility and thereby control the distribution of transport carriers.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Transporte Axonal , Células Cultivadas , Células HeLa , Humanos , Cinesinas/metabolismo , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Ratos
9.
Mol Biol Cell ; 23(21): 4226-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22956769

RESUMO

Cytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N-dynein-dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end-directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Transporte/química , Complexo Dinactina , Células HeLa , Humanos , Proteínas de Membrana/química , Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
10.
Curr Biol ; 21(11): 967-74, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21596566

RESUMO

Rab6 is a conserved small GTPase that localizes to the Golgi apparatus and cytoplasmic vesicles and controls transport and fusion of secretory carriers [1]. Another Rab implicated in trafficking from the trans-Golgi to the plasma membrane is Rab8 [2-5]. Here we show that Rab8A stably associates with exocytotic vesicles in a Rab6-dependent manner. Rab8A function is not needed for budding or motility of exocytotic carriers but is required for their docking and fusion. These processes also depend on the Rab6-interacting cortical factor ELKS [1], suggesting that Rab8A and ELKS act in the same pathway. We show that Rab8A and ELKS can be linked by MICAL3, a member of the MICAL family of flavoprotein monooxygenases [6]. Expression of a MICAL3 mutant with an inactive monooxygenase domain resulted in a strong accumulation of secretory vesicles that were docked at the cell cortex but failed to fuse with the plasma membrane, an effect that correlated with the strongly reduced mobility of MICAL3. We propose that the monooxygenase activity of MICAL3 is required to regulate its own turnover and the concomitant remodeling of vesicle-docking protein complexes in which it is engaged. Taken together, the results of our study illustrate cooperation of two Rab proteins in constitutive exocytosis and implicates a redox enzyme in this process.


Assuntos
Exocitose/fisiologia , Oxigenases de Função Mista/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Células HeLa , Humanos , Fusão de Membrana , Oxigenases de Função Mista/análise , Oxigenases de Função Mista/metabolismo , Oxirredução , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...